Основна семіотика нейрофізіології

4905_640

к.мед.н.  нейрофізіолог невролог Олексюк-Нехамес А.Г.

Нервово-м’язова система являє собою функціонально тісно зв’язаний комплекс кістякових м’язів і сегментарних периферичних утворень нервової системи (сегментарні мотонейрони і рухові периферичні нервові волокна), що забезпечують їхню іннервацію. Функціональною одиницею нервово-м’язової системи є рухова одиниця (РО), що складається з одного мотонейрона, його аксона і м’язових волокон що їм іннервуються. М’язові волокна, що відносяться до території однієї РУ, функціонують як єдине ціле за принципом «усі чи нічого».Територія РО на поперечному зрізі наближається до кола і, як правило, «перекривається» територіями двох-трьох інших РУ.Одним з базових понять у электронейроміографії є рухова одиниця.Рухова одиниця (РУ) – це функціональна одиниця нейромоторного апарату, представляє собою групу м’язових волокон, що іннервується одним мотонейроном передніх рогів спинного чи мозку рухових ядер мозкового стовбура. У залежності від функціонального призначення РУ можуть включати різне число м’язових волокон: від 10—25 у дрібних м’язах до 2000 у великих м’язах, що несуть основне антигравітаційне навантаження.Гладке і більш-менш тривале скорочення м’яза в природних умовах забезпечується асинхронною роботою різних РУ з різними територіями.Нарощування сили скорочення здійснюється спочатку підключенням нових рухових одиниць (РУ), а потім і збільшенням частоти імпульсації по рухових аксонах, cкерованих на інтенсифікацію роботи.З функціональної точки зору РО розділяють на 2 основних типи: повільні (I тип) і швидкі (II тип).Повільні рухові одиниці (РО) включають повільний мотонейрон, що іннервує однотипні повільні м’язові волокна, швидкі РО — відповідно швидкі мотонейрони і швидкі м’язові волокна. У межах одного м’язу РО, що мають меншу територію, є повільними, і, навпаки, великі РО є швидкими.Повільні мотонейрони, як правило, малі по величині; вони характеризуються високою збудливістю, низьким порогом включення в імпульсну активність, відносно низкою частотою импульсації, вузьким частотним діапазоном між мінімальною і максимальною частотою импульсации, порівняно невисокою швидкістю проведення імпульсу по аксоні (і його меншим діаметром), високою витривалістю, нестомлюваністю.Швидкі мотонейрони — більш великі по величині клітини з більш товстим аксоном — характеризуються у порівнянні з повільними мотонейронами більш низькою збудливістю і високим порогом включення в імпульсну активність, вони використовуються лише при необхідності створення щодо великих по силі статичних і динамічних м’язових скорочень, а також швидкісних напруг з високим градієнтом сили. Нестомлюваність “повільних” мотонейронов обумовлене здатністю їх довгостроково (протягом десяток хвилин) підтримувати стабільно низькочастотну импульсацію без зниження її частоти. Швидкі мотонейрони відносяться до «швидко стомлюваних», оскільки не можуть стійко підтримувати високочастотну импульсацію: слідом за високочастотним розрядом настає більш-менш швидке падіння частоти. У залежності від швидкості зниження частоти импульсації швидкі мотонейроны поділяють на 2 підтипи: підтип ІІА — стомлюються повільно (частота імпульсації знижується повільно) і підтип ІІБ — стомлюються швидко (частота импульсації знижується швидко).Два підтипи швидких мотонейронов мають і інші розходження — у порозі порушення, частотному діапазоні импульсації.Відповідно швидким і повільної РУ м’язові волокна, що входять у їхній склад, відносяться до швидких чи повільних.Варто знати сучасні уявлення про структуру і біохімію основного складного елементу м’язової тканини — м’язове волокно  і механізми його скорочення.Таким чином: загальне число м’язових волокон у людини відносно стабільно — воно наростає лише протягом першого півріччя життя.Внутрішній вміст волокна — цитоплазма — складається з ендоплазматичного матриксу і Ендоплазматичного ретикулуму. Ендоплазматичний матрикс можна уявити у вигляді внутрішньоклітинної рідини, у яку занурені скорочувальні елементи волокна — міофібрилли.Ендоплазматичний ретикулум — складна система подовжніх і поперечних трубочок і мішечків, покритих мембраною, аналогічної плазмолемі і, очевидно, що являється відгалуженням плазмолемми у глибину волокна.Паралельно росту дитини збільшується товщина волокон, що у дорослих приблизно в 5 разів більше, ніж у немовлят.М’язове волокно покрите мембраною — плазмолеммою.Міофибрилла — ниткоподібний утвір діаметром 1—3 мкм. Усього м’язове волокно містить до 1000 і більш міофибрилл.Міофибрилла складається з пучка паралельних товстих міозинових і тонких актинових міофіламентів (ниток), розташованих на поперечному зрізі міофібрилл гексагонально: актинова нитка оточена трьома міозиновими, а міозиновая — шістьма актиновими.Діючою одиницею міофібрилли є саркомер — проміжок між двома 2-лініями.Таким чином, міофибрилла — це ланцюжок саркомеров, ніби «прикладених» один до одної — кінець у кінець. Саме вкорочення саркомера визначає скорочення міофибрилл, м’язових волокон і всього м’яза.Поділ м’язових волокон на швидкі і повільні, тобто величина швидкості скорочення їх, насамперед залежить від активності міозин-АТФ-ази.Швидкі м’язові волокна з високою активністю цього ферменту відрізняються більш високою швидкістю скорочення — більш швидким замиканням і розмиканням поперечних містків з актином у порівнянні з повільними волокна­.  Не володіючи здатністю до швидких скорочень, повільні волокна відрізняються значно більшою витривалістю — здатністю до виконання тривалої роботи.Швидкі волокна на відміну від повільних характеризуються високою активністю гліколітичних ферментів (фосфофрукто-кінази), і великим змістом глікогену, що визначає їхню здатність до швидким і сильним, але нетривалим скороченням.Будь-який кістковий м’яз, як правило, містить і швидкі і повільні м’язові волокна, але співвідношення їх знаходиться у широких межах у залежності від характеру роботи, що виконує даний м’яз, віку, межі індивідуальних особливостей рухової характеристики людини. Швидкі волокна переважають у м’язах, яким потрібно велика швидкість скорочення і максимальна сила, що розвивається в короткий проміжок часу (високий «градієнт сили»).Навпаки, повільні волокна переважають у м’язах, призначених до виконання тривалої роботи зі стабільним, але невисоким зусиллям.Швидкі волокна васкуляризуются меншим числом капілярів, зміст у них мітохондрій, міоглобіну і жирів нижче, ніж у повільних м’язових волокнах. Так само як і «швидкі» мотонейрони, швидкі м’язові волокна поділяються на два підтипи.Процентний вміст швидких волокон залишається найбільш високим у активному віці — від 20 до 40 років (близько 60 %), після 40 років загальне число швидких волокон поступово зменшується, а після 60 років переважають повільні волокна (55%), що відповідає динаміці вікової трансформації рухової активності.

Товщина швидких волокон також починає зменшуватися після 40 років і до 60 років падає приблизно в 1,5 рази, у той час як товщина повільних волокон залишається щодо стабільної протягом життя, зниження намічається лише після 60 років.Пучок м’язових волокон одної ПРО – при міодистрофіях.Нервово-м’язова передача, тобто передача імпульсу від аксона мотонейрона на м’язове волокно, здійснюється не безупинно, а за допомогою нервово-м’язового синапса, що є не пасивною «переправою» сигналу, а активно бере участь у регуляції кількості і частоти сигналів, що переправляються.Отже, нервово-м’язовий синапс — це тонка щілина, укладена між пресинаптической мембраною (мембраною кінцевої гілочки рухового аксона) і постсинаптичною мембраною (мембраною м’язового волокна) чи кінцевою пластинкою. В області кінцевої пластинки плазмолемма утворює численні складки, що збільшують її поверхню.

Поширення нервового імпульсу по аксоні.Проведення імпульсу по мієлінізованному нервовому волокну.Пресинаптична мембрана виділяє медіатор ацетилхолін, міхурці якого містяться у величезній кількості в кінцевих закінченнях аксона, а постсинаптична мембрана має у своєму розпорядженні особливі, чутливі до ацетилхоліну рецептори, але одночасно містить фермент ацетилхолинестеразу, здатну руйнувати ацетилхолін. МЕХАНІЗМ ВИНИКНЕННЯ І ПРОВЕДЕННЯ НЕРВОВОГО ІМПУЛЬСУ.При подразненні нервової клітки виникає швидке коливання величини мембранного потенціалу, що відповідає утворенню потенціалу дії (ПД).При цьому, проникність мембрани для іонів натрію різко підвищується і стає в десятки разів вище проникності для іонів калію: швидкісний потік іонів натрію всередину клітини значно переважає над зворотним потоком іонів калію.У зв’язку з цим виникає реверсія мембранного потенціалу, що відповідає висхідній частині кривої потенціалу дії (ПД) — фазі деполяризації.Висока проникність мембрани для іонів натрію триває усього частки мілісекунди, слідом за чим проникність для іонів натрію знижується, а для іонів калію підвищується.Включення в роботу натрій-калієвого насосу приводить до видалення іонів натрію з протоплазми і «накопичуванню» всередину клітини іонів калію: відновлюється звичайне іонне співвідношення по ободва боки мембрани і вихідний рівень поляризації (потенціал спокою).

(ПД, потенціал дії) виникає тільки за умови деполяризації до визначеного критичного рівня деполяризації — неоднакового в різних ділянках нейрона.Чим вище поріг деполяризації, тим нижче збудливість мембрани і навпаки.При подразненні аксона достатня деполяризація на 5-10 мв, при подразненні тіла нейрона необхідна деполяризація на 20—35 мв.При дії подразника діє закон «все чи нічого»: якщо подразнення підпорогове, ПД не виникає, якщо надмежове — розвивається максимальна для даних умов амплітуда ПД.При виникненні ПД у визначеній ділянці мембрани тіла чи нейрона його аксона створюється різниця потенціалів між збудженою ділянкою і незбудженим сусідньої — з’являються місцеві струми, що приводять до деполяризації сусідньої (незбудженої) ділянки мембрани, підвищенню її проникності для іонів натрію і створенню тут нового потенціалу дії -ПД. Принцип генерації потенціалу дії рухової одиниці ПД РО (А, Б, В, — мотонейрони переднього рогу спинного мозку; 1-5 м’язові волокна, що відносяться до території інервації мотонейрону. Оскільки в ділянці вихідного порушення в цей період настає рефрактерная фаза і відновлюється потенціал спокою, то створюється враження зсуву ПД з однієї ділянки на сусідній.

Насправді поширення імпульсу по аксоні — це не зсув одного ПД, а багаторазове виникнення нових ПД на сусідніх відрізках мембрани аксона по його ходу.Імпульс може поширюватися (проводитися) по аксоні в обидва боки – ортодромно* (від тіла нейрона) і антидромно (назад до тіла нейрона), однак властивість рефрактерности нейрона визначає в нормі «загасання» антидромного сигналу.Таким чином, проведення імпульсу по аксоні відбувається за рахунок місцевих струмів, і, отже, швидкість проведення імпульсу (СПИ) насамперед визначається властивостями нервового волокна (аксоплазмы і мембрани) і навколишньої волокно середовища. (згодом буде  вивчатися ортодромна і антидромна методика накладання електродів) 

Основні принципи дії і поняття «функціональної системи».Наукове пояснення механізмів рефлексотерапії.

40097

Основні принципи дії  і поняття «функціональної системи» Наукове пояснення механізмів рефлексотерапії.  Філо- і онтогенез нервової системи. Нейрофізіологія, деякі елементи. 

автор: канд.мед.наук. нейрофізіолог невролог, рефлексотерапевт Олексюк-Нехамес А.Г.

Взаємодія нейронних груп, що забезпечують ту чи іншу реакцію чи комплекс реакцій, лежить в основі функціональної системи. Поняття «функціональна система» дозволяє пояснити деякі закономірності становлення нервово психічних функцій в онтогенезі. Важливо що елементи функціональної нервової системи формуються в один і той же час,ь хоча можуть належати до філогенетичним різним рівням. Внаслідок цього в процесі ембріонального розвитку наряду з загальною послідовністю утворення різних рівнів нервової системи (по принципу: спочатку еволюційно більш древні, а потім більш молоді) спостерігаються і відхилення від цієї послідовності. Функціональні системи які мають першочергове життєве значення формуються у першу чергу. Оскільки у функціональну систему об’єднуються різні в еволюційному значенні рівні, то вмежах одного і того ж рівня спостерігаються  різні рівні дозрівання окремих елементів в залежності у втягнення їх в функціональну систему. Це принцип гетерохронності або систематогенезу важливий для розуміння особливостей розвитку нервової системи, але і при вивченні тих порушень, які могли б виникати в ембріональному періоді. Чим більше в ранньому періоді внутріутробного розвитку відмічалась дія шкідливостей тим грубіше і дифузніше порушення,  іна більшу кількість функцій воно розповсюджується.Дякуючи взаємодії  центральних і периферичних відділів нервової системи здійснюється регуляція окремих фізіологічних функцій, підтримання параметрів внутрішнього середовища і на певному рівні, вироблення «рішень»  для реалізації певних програм дії у відповідній ситуації і потерб організму. Основною функціональною одиницею нервової системи являється нейрон у ньому є сома (тіло клітини) і відростки: дендрити і аксон. Нервовий імпульс розповсюджується в одному напрямку: по дендритам – до тіла клітини і від тіла клітини —  по аксону ( закон динамічної поляризації нервової клітини Рамон-і-Кахаля). У функціональному відношенні нейрони можна було поділити на чутливі рухові (мотонейрони)  і  вставочні у яких відбувається попередня проміжна переробка імпульсів і організуються колатеральні зв’язки. Особливо це спостерігається на структурах спинного мозку. Зв’язок між нервовими клітинами і їх відростками встановлюється за допомогою синапсів, у яких переключення імпульсів відбувається у певному напрямі: від акосну до дендриту чи тілу клітини. Розрізняють аксон-дендритичні і аксон-соматичні синапси. Існування полісинаптичної нервової сітки дозволяє створити можливість формування складних структур які здатні автономно регулювати ті чи інші функції.Комплекс нейронів які приймають участь у формуванні функції визначається як нервовий центр», проте у фізіологічному змісті, оскільки обєднання нейронів у єдину функціональну групу нерідко розповсюджується у різних і віддалених відділах нервової системи. У неврології часто застосовують вислови: кірковий центр іннервації взору, дихальний центр продовгуватого мозку, спинальний центр сечовипускання, варто мати на увазі, що регуляція названих функцій здійснюється при одночасній дії багатьох відділів нервової системи. У цьому є зміст інтегративної діяльності нервової системи.

Скільки б складною не була б діяльність нервової системи в процесі еволюції , основу її складає рефлекторний принцип.  Філогенез древньої нервової ситеми можна уявити як шлях від простої рефлекторної дуги до моносинаптичним зв’язкам що забезпечує найбільш диференційовані системи форми реагування. В рефлекторній дузі розрізняють аферрентну частину (прийом інформації) центральну (переробка інформації) і еферентну частину (організація відповіді).

Для прийома інформації її обробки, і регламентації сили дії і якості відповіді необхідн наявність рецепторів; систем що забезпечують аналіз інформації і вироблення рішень, а також виконуючих центрів.Для контрою за виконавчими центрами необхідна інформація про те як виконуються накази, наскільки відповідає даний результат запланованому (запрограмованому).Цей процес контролю здійснюється при допомозі оберненого зв’язку виконуючого апарату з програмним центром. В результаті формується кільцева структура: датчик первинної інформації (рецептор) – аналізуючий , і програмуючі центри- виконавчий апарат – датчик інформації до центру.Принцип кільцевої регуляції у нейрофізіології – один із самих суттєвих доповнень рефлекторного принципу. Введення поняття оберненого зв’язку дозволило встановити яким чином здійснюється саморегуляція  у живих системах.      Підтримання якого небуть фізіологічного параметра на певному рівні – це активний динамічний процес, який здійснюється при допомозі системи позитивного і негативного оберненого ззвязку. Позитивний обернений зв’язок сприяє посиленню еферентних впливів, негативний обернений зв’язок приводить дщо ослаблення цих впливів. Якщо значення параметра опускається нижче заданого рівня ,то вступає в силу позитивний обернений зв’язок, посилюється еферентний вплив і значення параметра посилюється.Наприклад: тремор кінцівки, нестійкість артеріального тиску — прояв подібних розладів.Примітивна нервова система побудована по принципу синцитія, збудження іде по ній у різних напрямках. Хоча при такій структурі неможлива координована дія і реакція, забезпечується все ж участь усього організму у тій чи іншій реакції. По ходу подальшої еволюції розвитку нервової системи ішов по шляху поступової цефалізації, тобто домінування головних відділів, що привело до формування головного мозку, кори великих півкуль як найвищого відділу центральної нервової системи.Найбільш складніша нервова система у ссавців,  у яких спостерігається значний розвиток кори великих півкуль мозку, мозолистого тіла що сполучає обидві півкулі формується пірамідна система, що має величезне значення для мимовільних рухів. Для нервової системи людини характерно подальший розвиток кори великих півкуль, особливо лобних долей. Поверхня кори у людини досягає 11/12 усієї поверхні мозку, причому приблизно 30% приходиться на лобні долі. Пірамідна система у людини досягає найвищого розвитку.Філогенетично в ході еволюції формується автономні нервові ганглії, що здійснюють регуляцію одної чи декількох функцій. При цьому доволі чітко стає принцип сегментарної іннервації:  кожен нервовий вузол відповідає певному сегменту тіла. На Рівні окремого сегменту здійснюється досить чітка регуляція. Дякуючи гангліозній нервовій системі стають можливим складні реагування: в гангліях закладені можливі програми дії. Проте сегменти зв’язані між собою    недостатньо і ще не виражений координуючий вплив якого-небуть центру. Такі автоматизми у світі комах. Цефалізація нервової системи у процесі еволюції характеризувалась утворенням у мозку центрів, які все більше підпорядковують нищерозміщені утвори.Як наслідок у мозковому стовбурі сформувалось життєво важливі центри автоматичної регуляції різних функцій у масштабі всього організму.Між центрами стовбура мозку також існує деяка субординація. Важливе значення має  вертикальна організація управління, тобто постійна циркуляція імпульсів між вище стоячими і нижче лежачими  відділами. Довгий час вважалося, що вищі нервові центри надають постійний гальмуючий вплив на нищі, тому при ураженні вищих відділів розгальмовуються нищі відділи.Найбільше відома теорія диссолюції розроблена англійським неврологом Джексоном. Згідно цій теорії ураження еволюційно молодих центрів приводить до активізації еволюційно більше древніх відділів, тобто спостерігається як би обернений хід еволюції- (диссолюція). Розгальмування древніх форм реагування.При порушенні центральних впливів знижується гнучкість реагування і автоматизм набуває більш примітивних форм. Активізація спінальних центрів може виступити як прояв компенсаторних процесів. У ієрархії нервових центрів особливе значення набуває кора великих півкуль. Дякуючи поступленню інформації від усього організму, від різних функціональних систем в корі можлива складна аналітично-синтетична діяльність по переробленні інформації , утворення зв’язків, що дозволяють закріпити індивідуальний досвід і блокування тих зв’язків, що втрачають своє значення. При допомозі великих півкуль мозку  можливе навчання, робото самовдосконалення живої системи, прийняття рішень, основане не лише на аналізі даної ситуації але і на врахування попереднього досвіду. Дякуючи корі великих півкуль- можливе у людини формування другої сигнальної системи- важливого інструмента у людській діяльності. В той же час не варто думати що кора великих півкуль як самий молодий продукт еволюції являється абсолютним керівником нервової системи. Функціональна активність центральної нервової системи регулюється постійним притоком аферентних імпульсів дякуючи функціонуванню неспецифічних структур головного мозку перед усім ретикулярної формації.  У ретикулярну формацію відходять коллатералі усіх спеціалізованих аферентних провідників. В результаті ретикулярна формація стає своєрідним  енергетичним колектором, від якого поступають активізуючи впливи в різні центри аж до кори головного мозку. Цим створюється можливість організації реакції навіть на самі слабі подразники. Від ретикулярної формації відходять і навіть самі гальмівні впливи як висхідні так і низхідні, що забезпечує прицільність окремих реакцій, концентрацію уваги.